Comment on “Spectra and energy levels of Er$^3+$ (4f11) in NaBi(WO$_4$)$_2$”
[J. Appl. Phys. 94, 7128 (2003)]

C. Cascalesa and C. Zaldo
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas,
E-28049 Cantoblanco, Madrid, Spain

(Received 5 May 2004; accepted 19 July 2004)

A recent article by Gruber et al. [Gruber, J. Appl. Phys. 94, 7128 (2003)] reports the measurements of the optical absorption and photoluminescence spectra of Er$^3+$ in NaBi(WO$_4$)$_2$ (NBW), and the results of the interpretation and fitting of the observed crystal-field (CF) splitting of Er$^3+$ multiplets with a quasicenter model. In the light of available, previously published information, we argued that these conclusions are not warranted. As a proof, the composition of the Er$^{3+}$-NBW wave functions and the energy levels derived from the final obtained CF parameters have been checked through the simulation of the temperature-dependent paramagnetic susceptibility χ_m according to the Van Vleck formalism and, unfortunately, experimental curves of χ_m versus T, measured in parallel and perpendicular directions to the e axis of the NBW crystal, were not adequately reproduced. The same simulation was carried out with a set of free ions and CF parameters resulting from our previous polarized CF analysis of Er$^{3+}$ in a NBW crystal, and the agreement with the measured χ_m versus T curves is a clear indication of the validity and physical meaning of our earlier performed CF analysis. © 2004 American Institute of Physics. [DOI: 10.1063/1.1792382]

A recent article by Gruber et al.1 reports the measurements of the optical absorption (OA) and photoluminescence (PL) spectra of Er$^3+$ in NaBi(WO$_4$)$_2$ (NBW), and the results of the interpretation and fitting of the observed crystal-field (CF) splitting of Er$^3+$ multiplets with a quasicenter model.

Contrary to the belief of these authors, after the paper of Kaminskii et al.2 a continuous effort has been undertaken to study the properties of NBW single crystals. This effort included aspects related to the synthesis and crystal-growth procedures;3–6 the structural characterization,7 which corrects previous8 space-group assignments; the anisotropic linear optical properties such as refractive indices,4 infrared absorption and Raman spectra,9 and scintillating capability,10–14 the nonlinear optical properties such as Raman shifting15 and up conversion,16 and finally, the detailed spectroscopy and CF analyses of several rare-earth R$^3+$ impurities, namely, Er$^3+$,17Nd$^3+$, Pr$^3+$, Nd$^3+$, and Yb$^{3+}$, in NBW crystals.

From the published information, the following are now well established:

(a) The tetragonal structure of NBW belongs to the noncentrosymmetric space group $I4$ (No. 82), $Z=2$, with the Na$^+$ and Bi$^{3+}$ cations sharing two nonequivalent crystal sites, $2b$ and $2d$, both with an S_4 point symmetry. One of these sites is preferentially occupied by Bi$^{3+}$, whereas the other contains a larger amount of Na$^+$ cations. Although in both sites Bi$^{3+}$ has an eightfold oxygen coordination, the Bi-O distances and O-Bi-O angles differ for these two sites. Since R$^3+$ ions replace Bi$^{3+}$, at least two different phenomena contribute to the large observed bandwidth of the R$^3+$ optical spectra: (i) the overlapping R$^3+$ contributions arising from these two sites and (ii) the broadening associated to the centers resulting from different short-range Na$^+$ and Bi$^{3+}$ distributions around each one of the two R$^3+$ sites mentioned previously.

(b) The presence of optical transitions associated to the polarization in the R$^3+$ optical spectra in NBW has been well documented for a number of ions. Figure 1 includes some selected examples for Er$^3+$, Nd$^3+$, and Pr$^3+$. The S_4 characteristics in the σ- and π-polarized spectra of Er$^3+$ in NBW are by no means weak but are strongly exhibited [see for instance the 10 K polarized OA spectrum corresponding to the $^{4}I_{15/2} \rightarrow ^{4}S_{3/2}$ transitions as it appears in Fig. 1(a)], and this situation is extensive to other Er$^3+$ transitions as shown in Fig. 3 of Ref. 17. This is a major point of the current comment because it is only from polarized low-temperature measurements of the optical spectra, through the attribution of the corresponding irreducible representations to the energy levels, which will be possible to correctly ascertain the splitting of $^{4}S_{3/2}$ for Er$^3+$ in NBW. The erroneous determination of the low-lying $^{4}S_{3/2}$ energy level in Ref. 1 leads to a poor description of the $^{4}I_{15/2}$ ground state of Er$^3+$ in NBW displayed in Fig. 4 and therefore to a systematic uncertainty on the hot bands described. A set of CF parameters derived from the phenomenological analysis of the optical spectra of Nd$^3+$ in NBW (and obviously its comparison with the results from more or less empirical models) does not constitute an adequate starting set for analyzing the CF splitting of Er$^3+$ in the same host. The explanation is related to the...
changes and distortions in the local symmetry created in the crystal when Bi\(^{3+}\) ions are substituted by larger Nd\(^{3+}\) (or Pr\(^{3+}\)) cations, which became evident in the polarized low-temperature OA and PL spectra for these cations in NBW. The optical spectra display features inconsistent with the S\(_4\) selection rules for the induced electric dipole and magnetic dipole transitions and are better described assuming an average C\(_2\) site symmetry and the corresponding 14 CF parameters defining this potential.\(^{19,20}\) However, when Er\(^{3+}\) cations are embedded in NBW, a well-defined S\(_4\) behavior is observed in both the \(\sigma\)- and \(\pi\)-polarized spectra.\(^{17}\) Additionally, the number of Nd\(^{3+}\) energy levels derived at 77 K in Ref. 2 is very limited, and discrepancies can be found with the more complete set of levels determined recently at 10 K.\(^{20}\)

On the other hand, it is well known that the determination of a consistent set of CF parameters and associated wave functions for the energy levels of a given 4f\(^N\) configuration allows the simulation of the thermal dependence of the paramagnetic molar susceptibility \(\chi_m\) for each direction of the R\(^{3+}\) point crystal site.\(^{22}\)

The experimental curves of \(\chi_m\) versus \(T\) measured in parallel \(\parallel\) and perpendicular \(\perp\) directions to the \(c\)-crystal axis, i.e., \(\parallel\) and \(\perp\) to the average fourfold-point symmetry axis of Er\(^{3+}\) in NBW (\([\text{Er}]=0.92\times10^{20} \text{ cm}^{-3}\)), are plotted in Fig. 2. Figure 2(a) shows the comparison with the corresponding \(\chi_m\) versus \(T\) curves calculated using the determined set of free ions and the S\(_4\) CF parameters for the Er-doped NBW crystal studied in Ref. 17. The same calculation has been also performed using the wave functions derived from the free ion\(^{23}\) and the final CF parameters achieved in Ref. 1, and these latter \(\chi_m^{-1}\) versus \(T\) curves are included in Fig. 2(b).

The good reproduction of the experimentally observed curves shown in Fig. 2(a) constitutes a successful test of the validity and physical meaning of our earlier CF analysis\(^{17}\) and a proof of the accuracy of the determined wave functions for Er\(^{3+}\) energy levels in the NBW host.
ACKNOWLEDGMENTS

The authors are indebted to Professor R. Sáez Puche for the paramagnetic susceptibility measurements. This work is supported by the the Ministerio de Ciencia y Tecnología, Spain, under Project MAT2002-4605-C05-05 and by EU Contract No. NMP3-CT-2003-505580.